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Abstract

We derive reduced one-dimensional model equations on the vo-
cal fold motion from the two dimensional compressible Navier-Stokes
equations coupled with an elastic damped driven wave equation on
the fold cover (epithelium), and analyze the oscillation modes of the
linearized system about a flat fold. We found two kinds of oscilla-
tion modes; one exists when the initial velocity and pressure exceed a
threshold proportional to the fold damping, and the other when the
initial pressure and velocity exceed a constant times fluid viscosity.
We also analyzed the reduced system under the quasi-steady approx-
imation and compared the vocal fold equation in the small vibration
regime with that of the Titze model. Our model shares the main qual-
itative features of the oscillation onset conditions with the Titze model
yet differs in the specific form of energy feedback from the air flow to
the fold motion. Qur model allows arbitrary fold shape and treats the
fold as a continuum; in contrast, the Titze model assumes a linear fold
shape among other ad hoc working assumptions and concerns only the
midpoint motion of the fold.



1 Mathematical Model

We model the vocal fold as a finite mass elastic tube of cross sectional area
A(z,t). For example, we can take rectangular cross section, length 2L, width
2w, and variable height 2A, then A = 4wh. Alternatively, we may take an
elliptical shape with principal axes of length 2h = 2h(x,t), and 2L. The
air flows from x = —L to x = L. We introduce our one dimensional con-
tinuum model, then give a derivation from the two dimensional isentropic
Navier-Stokes equations. The vocal flows are low Mach number and free of
shocks, and so the isentropic assumption is valid. The model consists of re-
duced aerodynamic equations and elastic wave equations. The aerodynamic
equations are:

e conservation of mass:
(Ap)e + (puA)y =0, (1.1)

p air density, u air velocity;

e conservation of momentum:

1 Avw  Ayu 4u

p air pressure, j air viscosity.
The force balance on the fold (tube wall) gives:

e the dynamic boundary motion:
M(A — Aeg)ue = 0(A — Aeg)ag — (A — Agg)r — B(A — Aey) + S+ fr- (1.3)

Here: m is the fold mass density; o is the longitudinal elastic tension of the
fold; « is the muscle damping constant; 3 is an elastic modulus modeling the
vibration property of the fold in the vertical; S is a cross section shape related
factor, S = 4w for rectangular cross sections, and S = 7w for elliptical cross
sections; f,, is a prescibed function to model muscle tone so that a particular

fold shape A, (converging or diverging or flat) serves as an equilibrium state.
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We shall write (1.3) into:
mAy = 0 Ay — Ay — BA+ Sp+ fom, (1.4)

where f,, = fi,(2) is prescribed forcing. For our analysis, we shall normalize
m = 1 and ignore the tilde.

e The equation of state:
p=rpl, vy>1, k>0, (1.5)

the system (1.1)-(1.5) is closed, and we solve an initial boundary value prob-
lem on x € [—L, L] with proper in flow boundary conditions and initial fold
shape.

In studying collapsible tubes ([12], [8]) and air flow through duct of spa-
tially varying cross section [15], it is common to use (1.1) with the one di-
mensional unsteady Euler equation which is (1.2) with the last two terms
omitted. The major differences in the two modeling problems are: (1) a
vocal fold is fast oscillatory in time (e.g. 100 - 200 Hz), (2) the vocal fold
carries mass, and a dynamic (damped driven wave) equation is necessary to
describe the fold motion; moreover, the vocal fold has mechanical damping.
In contrast, collapsible tubes are massless and damping free [12]. The con-
servation of mass and momentum in the collapsible tube system is recovered
when A; < A and g — 0. In [12], the tube cross section is related to the
pressure p by a tube law (analogue of equation of state: p = A" — A™2) with
p = 1. Here, p and p are related by the equation of state, the gamma gas
law; then the cross section A is related to p dynamically.

We derive the fluid part of the model system assuming that the fold
varies in space and time as A = A(z,t). Consider a two dimensional slightly
viscous subsonic air flow in a channel with spatially temporally varying cross
section in two space dimensions, Qy = Qy(t) = {(z,y) : * € [-L,L],y €
[—A(z,t)/2, A(z,t)/2]}, where A(x,t) denotes the channel width with a slight

abuse of notation, or cross sectional area if the third dimension is uniform
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and equal to one. The two dimensional Navier-Stokes equations in differential
form are [2]:
e conservation of mass:

pr+ V- (pi) = 0; (1.6)

e conservation of momentum:

(pil)y = -V - (p( 1)+ 690-7’5(15; (1.7)
where ¢ is the stress tensor, o = (0;;) = —pd;j + d;j, and:
divi

T(Sij), €ij = Q(sz] +Uja;), (21, 22) = (2, Y);

1 is the fluid viscosity; €2 is any volume element of the form:

dij = 24 (eij —

Q={(x,y): 2 €la,b] C[—L,L],y € [-A(z,t)/2, A(z,1)/2].}.

The equation of state is (1.5).

The boundary conditions on (p, #) are:

(1) on the upper and lower boundaries y = +A(z,t)/2, p, = 0, and @ =
(0,£A;/2), the velocity no slip boundary condition;

(2) at the inlet, @(—L,y,t) = 1, a prescribed inlet velocity, p(—L,y,t) = p,
a prescribed inlet density (deduced from input pressure);

(3) at the outlet, @,(L,y,t) =0, px(L,y,t) = patm — p(L,y,t), to minimize
reflected waves.

We are only concerned with flows that are symmetric in the vertical.
For positive but small viscosity, the flows are laminar in the interior of g
and form viscous boundary layers near the upper and lower edges. The
vertically averaged flow quantities are expected to be much less influenced
by the boundary layer behavior.

Let us assume that the flow variables obey:

[u1,y| < [urz], Jusy| < |u1y], away from boundaries of €,
i1 | > |i)|, near the boundaries of 2,

|py| < |pz|, throughout €. (1.8)
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These are consistent with empirical observations in the viscous boundary
layers [2], namely, there are large vertical velocity gradients, yet small pres-
sure or density gradients in the boundary layers. The boundary layers
are of width O(u'/?). Denote by p, @, the vertical averages of p and u,.
Note that the exterior normal i = (—A4,/2,1)/(1 + A2/4)Y2 if y = A/2,
it = (—Ay/2,-1)/(1 + A2/ 2 if y = —A/2.

Let a =z, b=1x+ 0z, 0x < 1, and start with the identity:

d d
dV:—/ J()dV = J(1) dV J,dV, (1.9
dt Q(t) dt Ja(to) p (1) Q(to) puJ(8)dV + Q(to) P (1.9)

where J(t) is the Jacobian of volume change from a reference time ¢, to t.
Since (%) is now a thin slice, J(t) = % for small dz, and J; = A.(t)/A(to).
The second integral in (1.9) is:

Ai(?)
JydV = A(tg)ox = p A(t)ox. 1.10
oy 710V = Py Alte) = 7 A0 (1.10)
The first integral is simplified using (1.6) as:
J(t dV:/ dV=—/ 77t dS. 1.11
Jogy P70V = [ o P (1.11)

We calculate the last integral of (1.11) further as follows:

o AJ2 A/2
foi-ids = [ (=puay.dy+ [ (pu)(e+ br.p.1)dy

:c+5w
+ [ 0,42) - (—Au/21) da
3:+5:1:
+ [ 0,-A2) (A2 1) da
ox ox
= PIARY + (0 Aymags + 5-(p Addy=ap2 + O((62)?)
~ (p-ﬂlA)|§+5$+pAt<5x+O(((5:c) ), (1.12)

where we have used the smallness of p, to approximate p|y—14/2 by 7 and

puy by p - uy.



Combining (1.9)-(1.11), (1.12) with:

%/ pdV = (pAdz); + O((6z)?), (1.13)
Q
dividing by dx and sending it to zero, we have:

(PA): + (P~ W A), =0,

which is (1.1).
Next consider 7 = 1 in the momentum equation, a = x, b = x + dx. We

have similarly with (1.7):

d/ av /( )dV+/ J,dV

— U = U u

dt Ja) Pt Q(t) Py Q(to)p Lt

- i-7idS / 71 dS
sa " * oaq "

+ —dV + g Asda. (1.14)
(1)

We calculate the integrals of (1.14) below.
d — 2 S 2
= /Q pur dV = (a1 Az + O((62)2) = (- TA); - 62 + O((62)2),

/a puri - 7S = (p- WA 07 + O(tl?), (1.15)
Q

where the smallness of u;, in the interior and small width of boundary layer
O(u'?) gives the O(u'/?) for approximating u? by uy - 1.

5 m+5w
/(9Q —pdyn;dS =~ —pA[LT ””—l—/ p A, dx

T

= —PA[T L 5 A, 52+ O((62)?).
By assumptions (1.8), div i & u;, away from boundary layers, hence:
d; & 2p(er; — €nd1,;/3),
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away from boundary layers. Near boundary layers, Vii = O(p~'/?), and
di,1 = O(p*?). Tt follows that di; ~ 3perr + O(p®?). Thus the contribution
from the left and right boundaries located at x and = + dx is:
— 4
Z/ duni = Adno ~ gAue—H§+5I + O bz
I Lr
4
~ L) 50 4+ 0 b (1.16)

The contribution from the upper and lower boundaries is:

Z / LA/ dll nq dS = _dllAw5$/2|y:A/2 — dllAw5$/2|y:—A/2
+ Y=
== /,L5.TZO<8J_’L_L')|3/::|:A/2. (117)
+
Similarly,
Z/ d12n2 dsS = uéwZO(@Lﬁﬂy:iA/g. (1.18)

Since 1 ly—sa/2 = O(u /%), the viscous flux from the boundary layers
are O(p!/?), much larger than the averaged viscous term *£(Awg,), = O(u)
after sending dx — 0, though they all converge to zero as u — 0, away from
the wake turbulent region. We notice that the vertically averaged quantities
have little dependence on the viscous boundary layers. Hence the quantities
from upper and lower edges in (1.17) and (1.18), and that in (1.15), should
balance themselves. Omitting them altogether, and combining remaining

terms that involve only w7y, p in the bulk, we end up with:
4
(p- A + (7T A)y = —(F A)s + AP+~ (AT, (1.19)

Simplifying (1.19) with the continuity equation (1.1), we find that:

Amr 4
2+ %A—I(Au—m)m + pug Ay, (1.20)

Uiy + W Ui, = =P, /P +

which is (1.2).



2 Linear Stability Analysis near a Flat Fold

In this section, we discuss the existence of a neutral oscillation mode of the
linearized system around a flat fold. It turns out that such a mode exist
for system (1.1)-(1.5) because of the A, u/A term or the viscous term. The
presence of oscillation mode due to the balance of dissipation in fluids with
the loss term of elastic media is known in subsonic flutter [5] for v > 0. In
our case here, it is essential that the derivation originated with the no slip
boundary condition on the fold, which implies that enough energy of the
background flow can transfer to the fold to offset the loss there. We show
this phenomenon below with a stability analysis.
The system (1.1)-(1.5) admits constant steady states: (ug,po, Ao), Po =
/{p(?, satisfying:
—BAy + dw’py = frn, (2.1)

where f,, is a constant so that Ay matches the height of the connecting vocal
tract. The constant states here may not be very realistic in that there is
a normally a curved transition from vocal tract to vocal fold, however we
ignore this effect for the moment. The constant states are pertinent to Y.
Qi’s experimental demonstration (Nov, 98) where an elastic membrane (with
thickness and mass density) is mounted on solid tubes, and air is pumped
through the membrane channel with enough velocity and pressure to induce
vibration and sound.

We are interested in conditions leading to the small amplitude oscilla-
tions near the constant steady states. This is similar to Titze [13], where
a lumped ODE is proposed and analyzed for the fold center using mucosal
wave approximation. However here, we perform calculations directly from
(1.1)-(1.5), and do not make any further modeling assumptions. Our analy-
sis will be extended to the regime where a background pressure gradient is
present. Since we have zero background pressure gradient, our results do not

compare directly yet with [13], though some qualitative features such as the



threshold conditions are similar.
Lettingu =ug+ 4, p=po+p, p=po+p, A=Ay + fl, and linearizing,
we get (v = 2L):

3po
(Aop+ Apo)i + (poAott + potoA + ugAop)y = 0, (2.2)
. . 1 . . Uy
Up + Uglly + —Py = Viigy + —OAt, (2.3)
Po Ao
Att = O-A.T.T — CYAt — BA + 4w2ﬁ (24)
Equations (2.2)-(2.3) are written as:
Aopy + Poz‘it + poAolly + Pouofio: + upAopy = 0, (2.5)
. . D R Uy
Up + ugly + Do _ Vilgy + —L A, (2.6)
Po Ao

Applying the operator 9; + uq0; — 10y, on (2.5) and using (2.6), we find:
(0541005 — vz ) (Ao s+ po A+ potio Ay +110 Ao p) — AoPan+10poAr = 0. (2.7)

Differentiating (1.5) gives: pr = kyp) = py, or pr = kypy ' pr upon linearizing
at p = po. Similarly, p, = /{fy,og_l,ﬁw. With these relations, equation (2.7)

becomes:
A A UoPo 4
F(at + ana: - Vazz)(at + anx)p — Pz + A At
0
+ A7 p0(0 4 1y — 1) (8 + 1edy) A = 0, (2.8)
where: . )
F = = = 5,
kypg €

with ¢ being the speed of sound at air density po.
Applying the operator Agl(0; + ug0y — V0ye)(0s + 100z) — AgOrsz to both
sides of (2.4), we get:

Ag[T 8y 42T 10 + (T2 — 1) Dy — VT Oy — T O] - (Ap — 0 Ay + a0 Ay + BA)
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= —4w? po[ (0 + 1e0y) (0) + UpOy) — VOar — VUgOppe A + uopofit]. (2.9)

Substituting the mode A = A e et g mT we end up with the

following algebraic equation of degree four for A:

[CA? + 2Tuem/ N + (1 — Tud)m™ 4+ vT'm® X\ 4 Tvugim™] - (A2 4+ om™ + aX + ]

dwugpo A

= —4w?po Ay [N + 2ugim' X — ugm' +vm”* X+ ivuem'®] — Y
0

, (2.10)

or:
TA* 4 (ol + 2T ugm'i + vI'm™) A3+

(T(B+om™) + a(2Tugm'i + vI'm'?) 4+ 4w? py Ayt + (1 — Tud)m'? + Tvugm’®i) A2

+((2Tugm'i + vT'm) (B 4+ om'?) — am’(Tuj — 1)

4 2
+alvugim™ + 4w?pg Ayt (2ueim’ + vm'?) + %oopo)/\
H(B + omP)((1 = Tud)n® + Tvugn®) + 4w A5 (vugin® = wm™)] = 0.
(2.11)
Proposition 2.1 Let v =0 in (2.11). (1) If
ugA
pout > alpoug +TH——2), (2.12)

4w?

(2.11) has a pure imaginary solution, implying the existence of an oscillation
mode.

(2) If the Mach number M = ug/c € (0,1) is small, « = O(uyg), TS > M,
Lo > M, then there is an oscillatory mode of the form:

2 —
i =5 (2422 +15) (=5 + o(urmas’ +9) " +0( M),

if 2w?peo > A and

2uppo _ 2w?po
= I's.
A()O[ AO + B




Proof: (1) Let v = 0, and A = in in (2.11), where 7 is real. The real and

imaginary parts give:

4 2
In* + 2Tugm'n® — [D(om + B) + m™?(1 — T'ug) + 12,00]772
0
8 2 !
+ [=2Tuem/(B + om'?) — W]n
0
A2 w?
+ [m?(1 = ) (om” + ) - =] =0, (2.13)
0
and:
4 2
—al'n® — 2aluem'n* + m?a(1 — Tug)n + W =0. (2.14)
0
For n # 0, a # 0, we have from (2.14):
2 / ) oy Awugpy
I'n® + 2l'ugm'n — m™(1 — Tug) — ——— =0,
A()Oé
so:
n= —Uoml + C\/le + 4w2u0p0/(A00z). (215)

Now we regard the left hand side of (2.13) as a continuous function of m/,

call it F'(m'). For |m'| > 1, n ~ (—ug = ¢)m/, direct calculation shows:

4w? py
F ! ~ — 2 .
(m") A, m'© <0
While for |m/| < 1,
Up Po !
~ £2
n T A T o(m'),
and: ) ) )
dw ugpy [ 4w ugpo 4w* po
F(m') ~ —-Ig— >0
(m ) FA()O! ( Ao(l/ ﬁ A() ’
provided:

4wugpg <4w2p0
— >«
Ag

T — Pﬂ) : (2.16)
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holds. Under (2.16), F(m) = 0 has a nonzero real solution, hence a pure
imaginary solution exists to (2.11) when v = 0.

(2) Let us turn to the small Mach number and damping regime where
more explicit oscillatory modes can be obtained. Consider € = uy/c < 1,
I'g =0(1), To = 0(1), up = O(a). Then n ~ ey = Ley/m”? + %,
n = O(1). Plugging this scaling into (2.11) with v = 0, dropping O(€) and

higher order terms, we find:

4w’ py

nt — (D(oem™ + B) +m™ +
Ay

)Nt +m”T(om™ + ) = 0, (2.17)

which simplifies into:

(UOPOFU Po Uopo)ma _ UoPo 4w ugpg  4w’py

_—— r'pg). 2.18
A()Oé A() A()O{ A()Oé A()Oé A() B) ( )
Let us select with order one ratio 3:
2wugpy  2w’po LTS (2.19)
Aoa N AO ’ .
also satisfying (2.16). Then (2.18) defines a nonzero |m'|:
2u? 202 -
P =g =48] -8+ 0( 2+ TH)) (2.20)
Ag Ag
if in addition:
2w’pgo > Agp. (2.21)

If 2w?pyo is close to Agf3, the |m/| in (2.20) can be nearly g(l + (%F) We end
the proof.

Remark 2.1 Condition (2.16) says that the initial velocity and pressure
must be large enough to overcome the damping constant o. A similar calcu-
lation on system (1.1)-(1.5) shows that F(m') = —4w?pym?/(TAp) < 0 for
all m', implying non-ezistence of oscillatory modes. We see the viscous ef-

fect coming from the fold boundary of the original two dimensional problem.
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Condition (2.16) is similar to the threshold pressure in Titze’s model [13]
in the sense that minimum energy (analogous to minimum lung pressure)
must exceed the fold damping coefficient times the prephonatory half width
Ag times another constant (compare with the second term on the right hand

side of (2.12)).

Remark 2.2 There is another neutral yet nonoscillatory mode from (2.13)-
(2.14), namely, n = 0, and:

— B, (2.22)

provided the right hand side expression is positive.

Next we turn on p > 0 in (1.2), and consider (2.11) with 0 < v < 1.
The oscillation mode in Proposition 2.1 will generically be slightly perturbed
and preserves its oscillation nature. The second neutral nonoscillatory mode

however will be perturbed into a new oscillation mode as we show below.

Proposition 2.2 If v > 0, and the right hand side of (2.22) is positive,

there is an additional oscillation mode of the form:
4w2uop0]_1
Ao
(B + om*)Tugm + 4w? po Ay 'ugm™] + O (V?), (2.23)

n = vp = —v[jam?(1—Tu]) +

where:

m' = mh + v (4uduwo A7" — (1= Tud) (B +20(m")3)) |

dwugpy\ "
Ag

(B + o(mp)*)Tug(mp)® + 4w?po Ay ug(mf)*) + O(1?). (2.24)

: (Puo(ﬁ +om) + 4w2,00A0_1u0> : <Oz(m6)2(1 —Tug) +
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Proof: Write down the real and imaginary parts of equation (2.11) with
A=
n* + 2Tugm'n® — (T(B + om™) + avI'm™ + 4w?py Ay + (1 — Tug)m™)n?
+(=2Tuem’ (B + om™) — al'vugm™ — 8w?pe Ay 'ugm’)n

+(B + om™?)(1 — Tud)m? — 4w?py Ay tuim = 0, (2.25)

and:
—(al + vT'm”)n® — (2aTugm’ + Cvugm)n?

4w?uopo

1,
+(B + om™)(Tvugm™) + dw?po Ay 'vugm'™ = 0. (2.26)

+@WI'm(B + om’?) — am™(Tul — 1) + 4w?pp Ay 'vm” +

Looking for n = vm; + O(v?) in (2.26), and keeping O(v) terms, we find
(2.23). Plugging (2.23) into (2.25) and seeking m’ = m{, + vm} + O(v?), we
find (2.24) after some algebra, and end the proof.

Remark 2.3 This second oscillatory mode is similar to the subsonic flut-
ter anomaly found in [5], where the von Kdrmdn plate equation models the
flexible walls and the oscillation frequency appears due to a positive small v.
However, the mode here exists even in the limit o — 0.

The condition that the right hand side of (2.22) be positive requires flow
velocity ug or pressure py or density po to be large enough to exceed [ for
given Ay and w. This is very different from the requirment of (2.16) which

nvolves o.

3 Quasi-steady Approximation and Relations
with the Titze Model

The glottal flow is nearly quasisteady and inviscid if the fold opening is not
too small, and the resulting Bernoulli’s law is often adopted as an approxima-

tion, [6], [13] among others. In this approximation, the temporal variation of

13



flow variables is considered much slower than that of the fold motion. Thus

let us drop the time derivatives, and viscous term in the flow equations to

get:
(puA)s =0, (3.1)
A
uuxz—%-l—%u, (3.2)

while keeping the fold dynamic equation and the equation of state the same.
Our goal is to derive a closed equation for the cross section area A. Inte-
grating (3.1) and (3.2) in z using the equation of state shows:

puA = Qy, (3.3)

7—1 T A
u?/2 + ::p_l = L%dm + Py, (3.4)

where Py and () are constants determined by the flow conditions at the inlet
x = —L. Note that without the integral term with 2%, (3.4) becomes the
standard Bernoulli’s law.

Substituting (3.3) into (3.4) gives:

Q! T A

= —d F. 3.5
2p2A2+7—1 o - pA? T+t (35)
We would obtain a closed equation on A if (3.5) could be solved for p in
terms of A. If A; is small (small fold vibration), we see that (3.5) has no

positive solution p for a sufficiently small A. This shows that the quasisteady

approximation is not valid for the general situation of small fold openings,
in which case the viscous term must be taken into account.

On the other hand, if A undergoes small vibration about a constant state
Ay which satisfies:

2 7—1
?0 S+ JPo Py,
200 A5 v —1
then (3.5) can be solved for p by perturbation. Letting A = Ag+A, p = po+p,
we find: , , )
Q. Q 7 =2 A Ay
- p— A+p p—Qo/ —5— =0,
AT AR ’ -z A3po
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or:

2
A v—2 . QO _ A / A
g (”p‘) P A%) Agpo Aapo " (36)
If vpi~ 2> —3Q—°g, or:
p7+1 > Qg (3 7)
0 ’YA3’

which means large pressure or small enough cross section area for given @,
then:

. Q3 l / ]
p= . A+ 3.8
PoA3 fypg - ;?g ' pOAO (3.8)

Now substituting (3.8) into the fold dynamic A equation, we obtain:

Att - O-Awa: + @At + ﬁA = Caero[/ At + QO A] (39)
—L poAg
where: i \
4 _
Caero = ;U'ZWO > @ .. (3.10)
TP T Ea PoAs

Equation (3.9) can be written as:
Att - O-Aacac + (CVA — Caero / I A)t + (ﬁ — CaeroQo,OalAal)A = 0. (311)

Equation (3.11) is a linear wave equation with damping and pumping. This
is easy to see from the energy identity. Assuming that A is periodic in z, we

have:
d - 1. . .
—/ dx <—A:25 + EA,% + (5 - CaeroQOpalAal)A2/2> =
dt J-L 2 2
L R L o
—a/ dx A2 + caem(/ dz A,)2/2. (3.12)
-L -L
We shall require that:

B - CaeroQOpalAal > 0; (313)
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which is true if py is sufficiently large for fixed 5 and Q. Then (3.12) says
that the rate of change of the total energy in time depends on the balance
of the natural fold damping (the negative term with prefactor «) and the
energy input from the aerodynamic flow (the positive term with prefactor

Caero) .

To find an oscillatory mode in (3.11), define ¢ = [, A, so ¢ satisfies:

Patt — OPrax + Pyt — CaeroPt + (ﬁ - CaeroQOp(;lA(;l)goa: =0.

irkx/L

We insert Fourier mode of the form ¢ = ¢.e , and get:

(ikﬂ-/L)(pk,tt + (Of(Zkﬂ'/L) - caero)gok,t
+ (Zk?T/L) (O’(lkﬂ'/L)2 -+ ﬁ — Caeon/(po A()))QOk = 0,

or:

Pt T+ (o + iLcaerO/%”))@k,t + (—o k27"2/L2 + B — Caero®Qo/ (P Ao))pr = 0.
(3.14)
The ODE (3.14) has an oscillatory solution if:

Leaero(km) ™t > o= O(1). (3.15)

Noticing from (3.10) that for large py, Caero ~ O(Ay?), hence (3.15) can be
satisfied if A2 is small enough for given o and L. The overall condition for
creating an oscillation mode is that for given Qq, L, (3, and «, choose py (or
po) sufficiently large and Ag sufficiently small so that

p3+1 > A%, dwLeyQiA;% > a. (3.16)
These two restrictions imply:
kyogtt > aQy?/(4wl). (3.17)

If we regard the left hand side as an analogue of pressure, then (3.17) says

that the pressure has to be above a certain threshold which is proprotional
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to damping constant « and inversely proportional to L, the fold longitudinal
length. These requirements agree qualitatively with those of the Titze model
[13] we briefly review and compare with next.

Titze [13] assumed that during oscillation, the vocal fold cover propagates
a surface mucosal wave in the direction of the air flow and the body of the
vocal ligament and muscle is steady. The fold shape is approximated as a
straight line connecting the fold entry of height h; and the fold exit of height
hy. Taylor expanding a mucosal wave with constant velocity ¢, Titze [13]

approximated entry area A; and exit area A, as:
A = 2w(ho + h + Thy), Ay = 2w(ho + h — Thy), (3.18)

where 7 = 2L/c the travel time for the mucosal wave to reach exit from
entrance. The fold motion is lumped onto the midpoint x = 0, and postulated
as (h = hg + h):

1 L
—L

Using Bernoulli’s law and linear fold shape, [13] showed that in particular

for small fold vibration about rectangular fold equilibrium position Ay:

A2 QTPSiLt
P :Ps 1—— = T, 320
p=hl-3) ho + h+Th, (3:20)

where P; is the subglottal pressure, and exit pressure is zero. Linearizing

(3.20) about hg, and keeping only linear terms, one has:
mhy + (o — 27 P,hy hy + Bh = 0, (3.21)
from which follows the threshold pressure condition:
a—27P, hyt =0, P,, = hoca/(4L). (3.22)

So the oscillation threshold pressure is proprotional to damping constant a,
inversely proportional to fold longitudinal length 2L; moreover, small opening

makes the formation of oscillation easier.
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Both our model and the Titze model captures the positive energy feedback
from air flow into the fold motion, though they are not of the same form.
Our model admits a systematic treatment free of ad hoc assumptions in the
Titze model; moreover, the fold shape is more realistic and allows arbitrary

spatial variation.
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